1.
(a-1)^2+(b-1)^2+(a-b)^2>0
a^2-2a+1+b^2-2b+1+a^2-2ab+b^2>0
2a^2+2b^2-2a-2b-2ab+2>0
所以a^2+b^2-a-b-ab+1>0
移项得..
a的平方+b的平方大于ab+a-1
2.
(1+1/a)(1+1/b)(1+1/c)
=1+ (1/a+1/b+1/c) + (1/ab+1/bc+1/ca) +1/abc
=1+ (1/a+1/b+1/c) + (a+b+c)/abc +1/abc
=1+ (1/a+1/b+1/c) + 2/abc
其中由柯西不等式,
(1/a+1/b+1/c)(a+b+c) > =(1+1+1)^2 = 9,
而a+b+c=1,所以(1/a+1/b+1/c) >= 9.
由几何不等式,
a+b+c=1 >= 3(abc)^1/3,
所以abc = 27,
因此
(1+1/a)(1+1/b)(1+1/c)=1+ (1/a+1/b+1/c) + 2/abc >= 1+9+2*27=64.