(2013•梧州)如图,抛物线y=a(x-h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x轴交于点
1个回答

解题思路:(1)由抛物线y=a(x-h)2+k的顶点坐标是B(1,2)知:h=1,k=2,则y=a(x-1)2+2,再把A点坐标代入此解析式即可;

(2)易知△OAC是等腰直角三角形,可得AC的垂直平分线是直线y=x,根据“线段垂直平分线上的点到线段两个端点的距离相等”知直线y=x与抛物线的交点即为点P,解方程组即可求出P点坐标;

(3)先求出第一象限内此抛物线上与AC距离最远的点的坐标,再与P点的坐标比较进行判断.满足条件的点一定是与直线AC平行且与抛物线有唯一交点的直线与抛物线相交产生的,易求出直线AC的解析式,设出与AC平行的直线的解析式,令它与抛物线的解析式组成的方程组有唯一解,求出交点坐标,通过判断它与点P是否重合来判断点P是否是第一象限内此抛物线上与AC距离最远的点.

(1)∵抛物线y=a(x-h)2+k顶点坐标为B(1,2),

∴y=a(x-1)2+2,

∵抛物线经过点A(0,1),

∴a(0-1)2+2=1,

∴a=-1,

∴此抛物线的解析式为y=-(x-1)2+2或y=-x2+2x+1;

(2)∵A(0,1),C(1,0),

∴OA=OC,

∴△OAC是等腰直角三角形.

过点O作AC的垂线l,根据等腰三角形的“三线合一”的性质知:l是AC的中垂线,

∴l与抛物线的交点即为点P.

如图,直线l的解析式为y=x,

解方程组

y=x

y=−x2+2x+1,

x1=

1+

5

2

y1=

1+

5

2,

点评:

本题考点: 二次函数综合题.

考点点评: 本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求直线、抛物线的解析式,等腰直角三角形的判定与性质,两函数图象交点坐标的求法,二次函数与一元二次方程的关系,综合性较强,难度适中.