在等差数列an中,各项均不为0,求证:1/a1×a2+1/a2×a3+...+1/an×an+1=n/a1×an+1
1个回答

证:

数列公差d=0时,即数列各项均相等时,

1/(a1a2)+1/(a2a3)+...+1/[ana(n+1)]=n/a1²

n/[a1a(n+1)]=n/a1²

1/(a1a2)+1/(a2a3)+...+1/[ana(n+1)]=n/[a1a(n+1)],等式成立.

公差d≠0时,

1/(a1a2)+1/(a2a3)+...+1/[ana(n+1)]

=(1/d)[1/a1 -1/a2 +1/a2 -1/a3+...+1/an -1/a(n+1)]

=(1/d)[1/a1 -1/a(n+1)]

n/[a1a(n+1)]=n/[a1(a1+nd)]=n×[1/(nd)][1/a1 - 1/a(n+1)]=(1/d)[1/a1 -1/a(n+1)]

1/(a1a2)+1/(a2a3)+...+1/[ana(n+1)]=n/[a1a(n+1)],等式成立.

综上,得1/(a1a2)+1/(a2a3)+...+1/[ana(n+1)]=n/[a1a(n+1)],等式成立.

提示:用到一个基本的变换:1/[a(a+d)]=(1/d)[1/a -1/(a+d)]