已知数列{a n }满足a 1 =1,且a n =2a n-1 +2 n (≥2,且n∈N * )
1个回答

(1)证明:∵a n=2a n-1+2 n(≥2,且n∈N *

a n

2 n =

a n-1

2 n-1 +1

a n

2 n -

a n-1

2 n-1 =1

∴数列{

a n

2 n }是以

1

2 为首项,1为公差的等差数列;

(2)由(1)得

a n

2 n =

1

2 +(n-1)•1=n-

1

2

∴a n= (n-

1

2 )• 2 n ;

(3)∵S n=

1

2 • 2 1 +

3

2 • 2 2 +…+ (n-

1

2 )• 2 n

∴2S n=

1

2 • 2 2 +

3

2 • 2 3 +…+ (n-

1

2 )• 2 n+1

两式相减可得-S n=1+2 2+2 3+…+2 n- (n-

1

2 )• 2 n+1 =(3-2n)•2 n-3

∴S n=(2n-3)•2 n+3>(2n-3)•2 n

S n

2 n >2n-3 .