已知数列{an},Sn是前n项的和,且满足a1=2,对一切n∈N*都有Sn+1=3Sn+n2+2成立,设bn=an+n.
1个回答

(1)∵a1=2,对一切n∈N*都有Sn+1=3Sn+n2+2成立,

令n=1,可得 2+a2=3×2+1+2,求得a2=7.

(2)证明:∵Sn+1=3Sn+n2+2,∴Sn=3Sn-1+(n-1)2+2,

∴两式相见可得an+1=3an+2n-1,即an+1+(n+1)=3an+2n-1+(n+1)=3(an+n) ①.

又bn=an+n,∴由①可得 bn+1=3(an+1+n)=3bn,∴数列{bn}是公比为3的等比数列.

(3)由于b1=a1+1=3,故bn=3×3n-1=3n

1

b1+

1

b3+…+

1

b2n?1=

1/3]+[1

33+

1

35+…+

1

32n?1=

1/3[1?(

1

9)n]

1?

1

9]=[3/8]-[3/8]×(

1

9)n,

lim

n→∞([1

b1+

1

b3+…+

1

b2n?1)=

lim

n→∞ (

3/8]-[3/8]×(

1

9)n )=[3/8].