求∫x*(2x-x^2)^1/2dx 在0-2上的积分
1个回答

∫(2x-x^2)^(1/2)dx

=∫√(-x^2+2x)dx

=∫√[-(x^2-2x+1)+1]dx

=∫√[1-(x-1)^2]dx

令(x-1)=sint,则x=sint+1

那么,dx=d(sint+1)=costdt

且,x=0时,sint=-1;x=1时,sint=0

则t∈[-π/2,0]

此时:√[1-(x-1)^2]=√(1-sin^2 t)=√(cos^2 t)=|cost|=cost

则原定积分=∫cost*costdt

=∫cos^2 tdt

=∫[(cos2t+1)/2]dt

=(1/2)∫(cos2t+1)dt

=(1/4)(sin2t)|+(1/2)(t)|

=(1/4)*(0-0)+(1/2)[0-(-π/2)]

=π/4