8Sn=(an +2)^2
8Sn-1=(an-1 +2)^2
而an= sn - sn-1
8an = (an +2)^2 - (an-1 +2)^2
0 = (an -2)^2 - (an-1 +2)^2
=>
(an -2)^2 = (an-1 +2)^2
=> an - 2 = ±(an-1 +2)
若 an - 2 = -(an-1 +2)
则 an = -an-1(正负交替或一直为0)
与an属于N+矛盾
故an - 2 = +(an-1 +2)
=>an = an-1 +4
即an是公差为4的等差数列
由于S1=a1,故
8a1=a1²+4a1+4
0=(a1-2)²
a1=2
=>
b1=-29
所以bn是公差为2,首项为-29的等差数列
显然加到-1是最小(再往后算就是加正数了,当然会变大)
故最小值=-1~-29
= -30*15/2
= -225