知x2-xy-2y2=0,且x≠0,y≠0,求代数式x2−2xy−5y2x2+2xy+5y2的值.
1个回答

解题思路:首先把x2-xy-2y2=0的左边分解因式可得(x-2y)(x+y)=0,进而可得x-2y=0或x+y=0,即x=2y或x=-y,再把x=2y或x=-y分别代入代数式

x

2

−2xy−5

y

2

x

2

+2xy+5

y

2

即可算出代数式的值.

∵x2-xy-2y2=0,

∴(x-2y)(x+y)=0,

∴x-2y=0或x+y=0.

∴x=2y或x=-y.

当x=2y时,

x2−2xy−5y2

x2+2xy−5y2=

(2y)2−2•2y•y−5y2

(2y)2+2•2y•y+5y2=

−5y2

13y2=−

5

13;

当x=-y时,

x2−2xy−5y2

x2+2xy+5y2=

(−y)2−2•(−y)•y−5y2

(−y)2+2•(−y)•y+5y2=

−2y2

4y2=−

1

2.

点评:

本题考点: 解一元二次方程-因式分解法.

考点点评: 此题主要考查了求分式的值,关键是把x2-xy-2y2=0转化为x=2y或x=-y,再用代入法求值即可.