解题思路:(1)由待定系数法将点A和点B代入二次函数y=ax2+bx+c得出a,b的关系式,再将点C、D代入,得出a、b、m、n的关系式,再因式分解,从而求得a,b,c,m的值,即得出二次函数的解析式;
(2)可求得直线AB的解析式,设点P(x,y),则M(x,-2x-3),N(x,x2-4x-6),可表示出MN的长度,整理是二次函数,根据二次函数的顶点坐标,求得线段MN长取得最大值.
(1)将A(-1,-1)、B(3,-9)代入y=ax2+bx+c,
得到
−1=a−b+c
−9=9a+3b+c,
两式相减得到:2a+b=-2,
再将C(m,m)、D(4-m,m)代入,
得到:
m=am2+bm+c
m=a(4−m)2+b(4−m)+c=0,
两式相减,得到:16a+4b-8am-2bm=0,
整理得到:(4a+b)(4-2m)=0
因为m≠2,所以4a+b=0,与2a+b=-2联立,
得到a=1,b=-4,
那么c=-6,m=6
所以该二次函数解析式为y=x2-4x-6,m=6或-1;
(2)设经过A(-1,-1)和点B(3,-9)的一次函数解析式为y=kx+b,
将两点坐标代入,得到
−1=−k+b
−9=3k+b,
解得k=-2,b=-3,
一次函数解析式为y=-2x-3
设点P(x,y),则M(x,-2x-3),N(x,x2-4x-6),
那么MN=(-2x-3)-(x2-4x-6)=-x2+2x+3,这里-1<x<3,
由于MN=-x2+2x+3=-(x-1)2+4,
所以当x=1时,线段MN长取得最大值4.
点评:
本题考点: 二次函数综合题.
考点点评: 本题是二次函数的综合题型,其中涉及到的知识点有用待定系数法求抛物线、直线的解析式,抛物线的顶点公式.在求有关最值问题时要考虑二次函数的顶点.