设椭圆E:x^2/a^2+y^2/b^2=1(a,b >0)过M(2,根号下2),N(根号下6,1)两点,0为坐标原点.
2个回答

1,过M、N

∴ 4a2+2b2=16,a2+1b2=1

∴ a2=8,b2=4

∴ x2/8+y2/4=1

2,设y=kx+m,

y=kx+m,x2/8+y2/4=1

∴(1+2k2)x2+4kmx+2m2-8=0

当△=8(8k2-m2+4)>0

x1+x2=-4km/1+2k2

x1x2=2m2-8/1+2k2

y1y2=m2-8k2/1+2k2,

OA⊥OB

∴x1x2+y1y2=0

∴3m2-8k2-8=0

∴ k2=3m2-8/8≥0

又 8k2-m2+4>0

∴ m2>2,3m2≥8

∴ m≥2√6/3或m≤-2√6/3

又y=kx+m与圆心在原点的圆相切

∴ r=|m|/√1+k2, r=2√6/3

∴ x2+y2=8/3

K不存在时,切线为 x=±2√6/3,交点( 2√6/3, ±2√6/3)或( -2√6/3, ±2√6/3),

∵ |AB|=1+k2|x1-x2|

k≠0时, |AB|=√32/3(1+1/4k4+1k2+4)

∴ 4√6/3<|AB|≤2√3(当 k=±√2/2时取等)

k=0时, |AB|=4√3/6

k不存时, |AB|=4√3/6

∴ |AB|∈[4√3/6,2√3]