(2011•阜阳模拟)甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后按原路以另一速度
1个回答

解题思路:(1)仔细观察图象可知:两车行驶3小时后,两车相距120千米;

(2)根据两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数关系及乙车的速度为每小时60千米可得出甲车得速度;

(3)设y与x之间的函数关系式为y=kx+b,代入两点坐标即可解得y与x之间的函数关系式为y=-150x+120,观察图象便可解得x的取值范围;

(4)根据题意解方程得出甲车得速度,然后根据题意求得A、B两地的距离即可.

(1)根据题意仔细观察图象可知3小时后两车相距120千米;(1分)

(2)∵甲车先到达B地,停留1小时后按原路以另一速度匀速返回,

∴横轴(  )内应填:4;

∵乙车的速度为每小时60千米,

∴一小时后行驶距离为60km,故纵轴(  )内应填:60;(2分)

设甲的速度变为xkm/h,根据3(x-60)=120,

解得:x=100,故甲车A到B的行驶速度为100千米/时;(3分)

(3)设甲车返回到与乙车相遇过程中y与x之间的函数关系式为y=kx+b,

4k+b=60

4.4k+b=0,

解得

K=−150

b=660

∴甲车返回到与乙车相遇过程y与x之间的函数关系式为y=-150x+660(5分)

自变x的取值范围是4≤x≤4.4.(6分)

(4)设甲车返回时行驶速度v千米/时,则

0.4(v+60)=60,解得v=90,

∴甲车返回时行驶速度为90千米/时,

由于100×3=300(或4.4×60+90×0.4=300)

A、B两地的距离为300千米.(8分)

(其它解法,正确合理可参照给分.)

点评:

本题考点: 一次函数的应用.

考点点评: 本题主要考查了一次函数的综合题,解答要注意数形结合思想的运用,是各地中考的热点,同学们要加强训练,属于中档题.

相关问题