(1)已知k、n∈N * ,且k≤n,求证: k C kn =n C k-1n-1 ;
1个回答

证明:(1)左边= k

C kn =k•

n!

k!(n-k)! =

n!

(k-1)!(n-k)! ,

右边= n•

(n-1)!

(k-1)!(n-k)! =

n!

(k-1)!(n-k)! ,

所以 k

C kn =n

C k-1n-1 ;

(2)由题意得数列a 0,a 1,a 2,…为等差数列,且公差为a 1-a 0≠0.

则 p(x)= a 0

C 0n (1-x ) n + a 1

C 1n x(1-x ) n-1 + a 2

C 2n x 2 (1-x ) n-2 +…+ a n

C nn x n = a 0

C 0n (1-x ) n +[ a 0 +( a 1 - a 0 )]

C 1n x(1-x ) n-1 +…+[ a 0 +n( a 1 - a 0 )]

C nn x n = a 0 [

C 0n (1-x) n +

C 1n x (1-x) n-1 +…+

C nn x n ]+( a 1 - a 0 )[

C 1n x (1-x) n-1 +2

C 2n x 2 (1-x) n-2 +…+n

C nn x n ] = a 0 [(1-x)+x ] n +( a 1 - a 0 )nx[

C 0n-1 (1-x) n-1 +

C 1n-1 x (1-x) n-2 +…+

C n-1n-1 x n-1 ] = a 0 +( a 1 - a 0 )nx[x+(1-x) ] n-1 =a 0+(a 1-a 0)nx,

所以对任意的正整数n,p(x)是关于x的一次式.