证明y=x+√(x²+1)在(-无限大,+无限大)上是增函数
1个回答

f(x1)-f(x2)=x1+√(x1^2+1)-x2-√(x2^2+1)

=(x1-x2)+√(x1^2+1)-√(x2^2+1)

=(x1-x2)+[√(x1^2+1)-√(x2^2+1)][√(x1^2+1)+√(x2^2+1)]/[√(x1^2+1)+√(x2^2+1)]

=(x1-x2)+(x1^2+1-x2^2-1)/[√(x1^2+1)+√(x2^2+1)]

=(x1-x2)+(x1^2-x2^2)/[√(x1^2+1)+√(x2^2+1)]

=(x1-x2)+(x1-x2)(x1+x2)/[√(x1^2+1)+√(x2^2+1)]

=(x1-x2){1+(x1+x2)/[√(x1^2+1)+√(x2^2+1)]}

设任意的x1>x2>0,则(x1-x2)>0,{1+(x1+x2)/[√(x1^2+1)+√(x2^2+1)]}>0

则f(x1)-f(x2)>0,即单调递增.

设任意的0≥x1>x2,

[√(x1^2+1)+√(x2^2+1)]>-(x1+x2)

则(x1+x2)/[√(x1^2+1)+√(x2^2+1)]>-1

则{1+(x1+x2)/[√(x1^2+1)+√(x2^2+1)]}>0

则f(x1)-f(x2)>0,即单调递增.

综上所述:在( -∞ +∞)上单调递增.