空间角计算,如图如图所示,求角X
4个回答

设AB=x,BC=y,CD=z

连接AD,易知:AD为体对角线,则AD^2=x^2+y^2+z^2

而AO=AB/cosa=x/cosa,DO=DC/cosb=z/cosb

故cosX=(AO^2+DO^2-AD^2)/2AO*DO=[(x^2/cos^2a +z^2/cos^2b -x^2-y^2-z^2)]/[2x/cosa *z/cosb]

易知:x*tana +z*tanb=y

故x^2tan^2a+z^2tan^2b+2xztanatanb=y^2

故x^2/cos^2a +z^2/cos^2b -x^2-y^2-z^2=x^2/cos^2a +z^2/cos^2b -x^2-z^2-x^2tan^2a+z^2tan^2b+2xztanatanb

=-2xzsinasinb/cosacosb

那么cosX=(-2xzsinasinb/cosacosb)/(2xz/(cosacosb)=-sinasinb

所以X=π-arccos(sinasinb)

有点烦,但并不难.