sin72=cos18
sin72=2sin36cos36=4sin18cos18(2cos18^2-1)
cos18=4sin18cos18(2cos18^-1)
1=4sin18(1-2sin18^)
令x=sin18
1=4x(1-2x^2)
8x^3-4x+1=0
(8x^3-2x)-(2x-1)=0
2x(4x^2-1)-(2x-1)=0
2x(2x+1)(2x-1)-(2x-1)=0
(2x-1)[2x(2x+1)-1]=0
(2x-1)[4x^2+2x-1]=0
x=1/2或(±√5-1)/2
因x=sin18故x∈(0,1)且x一定不为1/2
x=(√5-1)/4
sin72=cos18=√(10+2√5)/4
是精确值