如图,三角形abc是等腰三形,ce是外角平分线,点d在ac上
2个回答

过点E作EF⊥BC,交BC延长线于点F ∵等边△ABC ∴∠ACB=∠A=60 ∴∠ACF=180-∠ACB=180-60=120 ∵CE平分∠ACF ∴∠ACE=∠FCE=∠ACF/2=120/2=60 ∵∠ADB=∠CDE ∴△ABD相似于△CED ∴AB/CE=AD/CD ∵AD=2CD ∴AD/CD=2 ∴AB/CE=2 ∵AB=6 ∴CE=3 ∵EF⊥BC,∠FCE=60 ∴CF=CE/2=3/2,EF=√3/2*EF=√3/2*3=3√3/2 ∴BF=BC+CF=6+3/2=15/2 ∴BE=√(BF +EF )=√(225/4+27/4)=3√7