解题思路:找点A或点B关于MN的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置.根据题意先求出∠CAE,再根据勾股定理求出AE,即可得出PA+PB的最小值.
作点B关于MN的对称点E,连接AE交MN于点P
此时PA+PB最小,且等于AE.
作直径AC,连接CE,OE,
又∵B是
AM的中点,
∴
AB=
BM=
ME=[1/2]
AM,
又∵A是半圆的三等份点,
∴∠AOM=60°,∠MOE=[1/2]∠AOM=30°,
∴∠AOE=90°,
∴∠CAE=45°,
又∵AC为圆的直径,
∴∠AEC=90°,
∴∠C=∠CAE=45°,
∴CE=AE=
2
2AC=
2,
即AP+BP的最小值是
2.
故答案为:
2.
点评:
本题考点: 垂径定理;勾股定理;轴对称-最短路线问题.
考点点评: 本题考查了垂径定理及勾股定理的知识,此题的难点是确定点P的位置:找点B关于MN的对称点,再连接其中一点的对称点和另一点,和AE于MN的交点P就是所求作的位置.再根据弧的度数和圆心角的度数求出∠CAE,根据勾股定理求出AE即可.