(1)
cosA=1/3
cos(B+C)=-cosA=-1/3
sin²[(B+C)/2]=[1-cos(B+C)]/2=[1-(-1/3)]/2=2/3
(2)
由余弦定理得
cosA=(b²+c²-a²)/(2bc)
cosA=1/3 a=√3代入,整理,得
(b²+c²-3)/(2bc)=1/3
b²+c²=(2/3)bc +3
由均值不等式得 b²+c²≥2bc
(2/3)bc+3≥2bc
(4/3)bc≤3
bc≤9/4
(2/3)bc +3≤(2/3)(9/4) +3=9/2
b²+c²的最大值为9/2