+c=(根号下3)a
正弦定理转换:
sinb+sinc=√3sina
2sin(b+c)/2cos(b-c)/2=3/2
cosa/2cos(b-c)/2=3/4
√3/2cos(b-c)/2=3/4
cos(b-c)/2=√3/2
B-C=±60°
因为:B+C=180°-A=120°
B=90°或B=30°
所以sin(B+π)=-sinπ=-1
√3sinA=sinB+sinC
又A=∏/3
则:sinB+sinC=3/2
又A+B+C=pi
则:C=pi-A-B
则:sinB+sin(pi-A-B)=3/2
sinB+sin(A+B)=3/2
sinB+sin(∏/3+B)=3/2
sinB+√3/2cosB+1/2sinB=3/2
3sinB+√3cosB=3
sinB+√3/3cosB=1
则sin(B+∏/6)=√3/2sinB+1/2cosB
=√3/2(sinB+√3/3cosB)
=√3/2