SinBSinAcosC=sinAsinCcosB+sinBsinCcosA
=sinC(sinAcosB+cosAsinB)
=sinCsin(A+B)
=sinC*sin[π-C]
=sinC*sinC
=(sinC)^2
所以cosC=(sinC/sinA)*(sinC/sinB)
由正弦定理
a/sinA=c/sinC
所以sinC/sinA=c/a
同理
sinC/sinB=c/b
由余弦定理
cosC=(a^2+b^2-c^2)/2ab
所以
(a^2+b^2-c^2)/2ab=c^2/ab
a^2+b^2-c^2=2c^2
a^2+b^2=3c^2
因为a^2+b^2>=2ab
所以3c^2>=2ab
显然c^2>0
所以ab/c^2