(本题满分8分)如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D
1个回答

(1)证明:连接OA

∵PA为⊙O的切线,

∴∠PAO=90°

∵OA=OB,OP⊥AB于C

∴BC=CA,PB=PA

∴△PBO≌△PAO

∴∠PBO=∠PAO=90°

∴PB为⊙O的切线

(2)解法1:连接AD,∵BD是直径,∠BAD=90°

由(1)知∠BCO=90°

∴AD∥OP

∴△ADE∽△POE

∴EA/EP=AD/OP 由AD∥OC得AD=2OC ∵tan∠ABE="1/2" ∴OC/BC=1/2,设OC=t,则BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t

∴EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m

∵PA=PB∴PB=3m

∴sinE=PB/EP=3/5

(2)解法2:连接AD,则∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,设OC=t,BC=2t,AB=4t由△PBC∽△BOC,得PC=2BC=4t,

∴PA=PB=2

t 过A作AF⊥PB于F,则AF·PB=AB·PC

∴AF=

t进而由勾股定理得PF=

t

∴sinE=sin∠FAP=PF/PA=3/5