证明:设X2>X1,X2-X1>0,令Y=X^(-1/3),有
Y=(1/X)^1/3,X≠0.
Y2-Y1=(1/X2)^1/3-(1/X1)^1/3
=(X1^1/3-X2^1/3)/(X2*X1)^1/3.
不论X取正,还是负数,都有X2*X1>0,
∵X2>X1,Y=X^1/3,为增函数,
不论X取正还是负数,都有X2^1/3>X1^1/3.
∴ X1^1/3-X2^1/3<0,
(X1^1/3-X2^1/3)/(X2*X1)^1/3
Y2-Y1<0.
∴Y2<Y1.
∴Y=X^(-1/3)在(-无穷,0)和(0,+无穷)为单调递减.