(2009•惠州模拟)垂直于直线2x-6y+1=0且与曲线y=x3+3x2-1相切的直线方程为______.
1个回答

解题思路:设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),根据函数在切点处的导数即为切线的斜率,求出n值,可得切点的坐标,用点斜式求得切线的方程.

设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),

则由题意可得3n2+6n=-3,∴n=-1,

故切点为(-1,1),代入切线方程 y=-3x+m可得m=-2,

故设所求的直线方程为y=-3x-2,

故答案为y=-3x-2.

点评:

本题考点: 直线与圆锥曲线的关系;两条直线垂直与倾斜角、斜率的关系.

考点点评: 本题考查两直线垂直的性质,两直线垂直斜率之积等于-1,函数在某点的导数的几何意义,求出切点的坐标是解题的关键.