解题思路:根据角平分线定义求出∠CAD=∠BAD,根据平行线的性质得出∠BEF=∠BAD,∠DEF=∠EDA,∠EDA=∠CAD,推出∠BEF=∠DEF,即可得出答案.
答:EF为△BDE的角平分线,
证明:∵AD是∠BAC的平分线,
∴∠CAD=∠BAD,
∵DE∥CA,EF∥AD,
∴∠BEF=∠BAD,∠DEF=∠EDA,∠EDA=∠CAD,
∴∠BEF=∠DEF,
∴EF为△BDE的角平分线.
点评:
本题考点: 平行线的性质;三角形的角平分线、中线和高.
考点点评: 本题考查了平行线的性质,角平分线定义的应用,主要考查学生的推理能力.