两道关于圆的暴难题!强者进!1、设圆满足:①截y轴所得弦长为2;②被x轴分成两段弧,其弧长之比为3:1;③圆心到直线l:
1个回答

第二题:

与x轴相切的圆,圆心的y坐标的绝对值为圆的半径.

所以,可设圆的方程为,

(x - c)^2 + (y - d)^2 = d^2,

(x - c)^2 + y^2 - 2dy = 0,

又,a(0,1)和b(4,a)在圆上,

所以,

(0-c)^2 + 1 - 2d = 0, c^2 + 1 = 2d, d = (c^2 + 1)/2. ...(1)

(4-c)^2 + a^2 - 2da = 0, ...(2)

将(1)带入(2),有,

(4-c)^2 + a^2 - a(c^2 + 1) = 0,

c^2 - 4c + 4 + a^2 - ac^2 - a = 0,

(1-a)c^2 - 4c + 4 + a^2 - a = 0 ...(3)

因满足条件的圆只有一个,所以关于c的2次方程(3)应该有2个相同的根.

因此,(-4)^2 - 4(1-a)[4 + a^2 - a] = 0,

4 - (1-a)[4 + a^2 -a] = 0,

4 - [4 + a^2 - a - 4a - a^3 + a^2] = 0,

a^3 - 2a^2 + 5a = 0,

a[a^2 - 2a + 5] = 0,

a[(a-1)^2 + 4] = 0.

所以,a = 0,

这时,(3)式化为,

(1-0)c^2 - 4c + 4 + 0 - 0 = 0,

c^2 - 4c + 4 = 0,

(c - 2)^2 = 0,

c = 2.

再由(1)式,

d = (2^2 + 1)/2 = 5/2.

因此,

圆的方程为,

(x - 2)^2 + (y - 5/2)^2 = (5/2)^2 = 9/4