(1)由已知得,
a n +1
2 =
S n , 4 S n = a n 2 +2 a n +1 .
当n=1时,求得a 1=1
当n≥2时, 4 S n-1 = a n-1 2 +2 a n-1 +1
所以 4 a n =4 S n -4 S n-1 = a n 2 +2 a n - a n-1 2 -2 a n-1
整理得(a n+a n-1)(a n-a n-1-2)=0,
因为{a n}的各项均为正数,所以a n-a n-1=2,
又a 1=1,所以a n=2n-1;
(2)由(1)得, b n = 4 n +λ×(-1 ) n-1 × 2 n+1 ,
又数列{b n}是单调递增数列,所以b n<b n+1恒成立,
从而 b n - b n-1 = 4 n+1 +λ×(-1 ) n × 2 n+2 - 4 n -λ×(-1 ) n-1 × 2 n-1
=3×4 n-3λ×(-1) n-1×2 n+1>0恒成立.
①当n是奇数时,得λ<2 n-1恒成立,2 n-1的最小值为1,λ<1
②当n是偶数时,得λ>-2 n-1恒成立,-2 n-1最大值为-2,λ>-2.
综上得:-2<λ<1.