(1) y = a(x - 4)(x + 2)
x = 0,y = -8a = -4,a = 1/2
y = (x - 4)(x + 2)/2 = x²/2 - x - 4
(2)C(0,-4)
BC = 2√5
P(p,0),p > -2
BP² = (p + 2)²
AC和PD的斜率均为1,PD的方程:y = x - p
BC的方程:x/(-2) + y/(-4) = 1
联立,D((p-4)/3,(2p + 4)/3)
BD² = [(p - 4)/3 + 2]² + [(2p + 4)/3]² = 5(p+2)²/9
BD = (√5)(p+2)/3
BP² = BD•BC
(p + 2)² = 2√5* (√5)(p+2)/3
p = 4/3
P(4/3,0)
(3)PD² = [(p - 4)/3 -p]² + [(2p + 4)/3]² = 8(p+2)²/9
PD = 2(√2)(p+2)/3
AC = 4√2
PD的方程:y = x - p,x - y - p = 0
A与PD的距离h = |4 - 0 - p|/√2 = (4 - p)/√2
△PCD的面积S = 梯形ACDP的面积 - △APC的面积
= (1/2)(PD + AC)*h - (1/2)AP*|C的纵坐标|
= (1/2)[2(√2)(p+2)/3 + 4√2]*(4 - p)/√2 - (1/2)(4 - p)*4
= -p²/3 + 2p/3 + 8/3
= -(p - 1)²/3 + 3
p = 1时,S最大
P(1,0)