1 (1)当x∈[0,π/2]时,(2x+π/6)∈[π/6,7π/6]
当2x+π/6=π/2,即x=π/6时,f(x)取最大值2a+a+b+1=2,即3a+b=1
当2x+π/6=7π/6,即x=π/2时,f(x)取最大值-2a+a+b+1=-4,即-a+b=-5
解得:a=3/2 b=-7/2
故f(x)=3sin(2x+π/6)-1
(2)由f(α)=f(β)知α和β关于f(x)的对称轴对称.
令2x+π/6=kπ+π/2得:x=(k/2+1/6)/π
即(α+β)/2=(k/2+1/6)π
α+β=(k+1/3)π
故tan(α+β)=±√3
2 由f(cos^2 a+2msina)+f(-2m-2)>0得:
f(cos^2 a+2msina)>-f(-2m-2)
又f(x)为奇函数,故
f(-2m-2)=f(-(2m+2))=-f(2m+2)
又f(x)在R上为增函数
故不等式可化为:
cos^2 a+2msina