1.已知函数f(x)=2asin(2x+π/6)+a+b+1(a>0)
2个回答

1 (1)当x∈[0,π/2]时,(2x+π/6)∈[π/6,7π/6]

当2x+π/6=π/2,即x=π/6时,f(x)取最大值2a+a+b+1=2,即3a+b=1

当2x+π/6=7π/6,即x=π/2时,f(x)取最大值-2a+a+b+1=-4,即-a+b=-5

解得:a=3/2 b=-7/2

故f(x)=3sin(2x+π/6)-1

(2)由f(α)=f(β)知α和β关于f(x)的对称轴对称.

令2x+π/6=kπ+π/2得:x=(k/2+1/6)/π

即(α+β)/2=(k/2+1/6)π

α+β=(k+1/3)π

故tan(α+β)=±√3

2 由f(cos^2 a+2msina)+f(-2m-2)>0得:

f(cos^2 a+2msina)>-f(-2m-2)

又f(x)为奇函数,故

f(-2m-2)=f(-(2m+2))=-f(2m+2)

又f(x)在R上为增函数

故不等式可化为:

cos^2 a+2msina