设函数f(x)=ax的三次方+bx+c(a不等于0)为奇函数,其图像在点(1,f(1))处的切线与直线x-6y-7=0垂
2个回答

f(x)=ax^3+bx+c,由于f(x)是奇函数,有:f(-x)=-f(x),即a(-x)^3+b(-x)+c=-ax^3-bx-c

可得:c=0.从而f(x)=ax^3+bx,导数f'(x)=3ax^2+b

在点(1,f(1))处的切线斜率k=f'(1)=3a+b,直线x-6y-7=0斜率为1/6,由切线与其垂直有:k=-6,

即3a+b=-6.(1)式

f'(x)=3ax^2+b最小值为b=-12,代入(1)式得:a=2.

综上:a=2,b=-12,c=0.