过抛物线y2=2px的焦点的两条相互垂直的弦AB和CD,求证1/AB+1/CD是定值
1个回答

焦点(p/2, 0)

设AB:y=k(x-p/2)

那么CD:y=(-1/k)(x-p/2)

A、B坐标满足方程k^2x^2-(pk^2+2p)x+k^2p^2/4=0

C、D坐标满足方程x^2-(p+2pk^2)x+p^2/4=0

AB=√[(x1-x2)^2+(y1-y2)^2]

=√[(k^2+1)(x1-x2)^2]

=√{(k^2+1)[(x1+x2)^2-4x1x2]}

=√{(k^2+1)[(p+2p/k^2)^2-p^2]}

=|2p(k^2+1)/k^2|

所以1/AB=k^2/[2p(k^2+1)]

CD=√[(x1-x2)^2+(y1-y2)^2]

=√[(1/k^2+1)(x1-x2)^2]

=√{(1/k^2+1)[(x1+x2)^2-4x1x2]}

=√{(1/k^2+1)[(p+2pk^2)^2-p^2]}

=|2p(k^2+1)|

所以1/CD=1/[2p(k^2+1)]

所以1/AB+1/CD=(k^2+1)/[2p(k^2+1)]=1/(2p)