a)利用数学归纳法证明
f(y)= y+r,(此时n=0)
假定f(y-nr) = (y-nr)+r对n=k成立则
f(y-(k+1)r) = f(2(y-(k+1)r+r) - (y-kr+r)) = f(2(y-kr) -f(y-kr)) = y-kr = (y-(k+1)r ) +r 也成立
因此这对所有正整数成立
b)我们假设k是最大的一个不满足上式得负整数,则
f(y-(k+1)r) = (y-(k+1)r)+r成立
而f(y-kr) = f(2(y-(k+1)r) - (y-(k+1)r +r) ) = f(2(y-(k+1)r) -f(y-(k+1)r)) = y-(k+1)r = y-kr+r
如果k是最大的一个不满足这个条件的负整数,则f(y-kr)必然有两个值,与f是单射矛盾
因此b)必然成立