(2011•江苏二模)已知各项均为正数的等差数列{an}的公差d不等于0,设a1,a3,ak是公比为q的等比数列{bn}
1个回答

解题思路:(1)因为k=7,所以a1,a3,a7成等比数列,又an是公差d≠0的等差数列,利用等差数列的通项公式及等比数列的定义可以得到an=a1+(n-1)d=n+1,bn=b1×qn-1=2n

(i)用错位相减法可求得anbn的前n项和为Tn=n×2n+1

(ii)因为新的数列{cn}的前2n-n-1项和为数列an的前2n-1项的和减去数列bn前n项的和,所以计算可得答案;

(2)由题意由于(a1+2d)2=a1(a1+(k-1))d,整理得4d2=a1d(k-5),解方程得

d=

a

1

(k−5)

4

q=

a

3

a

1

a

1

+2d

a

1

k−3

2

,又因为存在m>k,m∈N*使得a1,a3,ak,am成等比数列,及在正项等差数列{an}中,得到2[4+(m-1)(k-5)]=(k-3)3,分析数特点即可.

(1)因为k=7,所以a1,a3,a7成等比数列,又an是公差d≠0的等差数列,

所以(a1+2d)2=a1(a1+6d),整理得a1=2d,

又a1=2,所以d=1,b1=a1=2,q=

b2

b1=

a3

a1=

a1+2d

a1=2,

所以an=a1+(n-1)d=n+1,bn=b1×qn-1=2n

(i)用错位相减法或其它方法可求得anbn的前n项和为Tn=n×2n+1

(ii)因为新的数列{cn}的前2n-n-1项和为数列an的前2n-1项的和减去数列bn前n项的和,

所以S2n−n−1=

(2n−1)(2+2n)

2−

2(2n−1)

2−1=(2n−1)(2n−1−1).

所以S2n−n−1−22n−1+3•2n−1=1

(2)由(a1+2d)2=a1(a1+(k-1))d,整理得4d2=a1d(k-5),

因为d≠0,所以d=

a1(k−5)

4,所以q=

a3

a1=

a1+2d

a1=

k−3

2.

因为存在m>k,m∈N*使得a1,a3,ak,am成等比数列,

所以am=a 1q3=a1(

k−3

2)3,

又在正项等差数列{an}中,am=a1+(m−1)d=a1+

a1(m−1)(k−5)

4,

所以a1+

a1(m−1)(k−5)

4=a1(

k−3

2)3,又因为a1>0,

所以有2[4+(m-1)(k-5)]=(k-3)3

因为2[4+(m-1)(k-5)]是偶数,所以(k-3)3也是偶数,

即k-3为偶数,所以k为奇数.

点评:

本题考点: 数列的求和;等差数列与等比数列的综合.

考点点评: 此题考查了等差数列,等比数列的定义及通项公式,还考查了解方程的能力,数列求和的错位相减法,及学生的计算能力.