a(n) = 2^n,
s(n) = 2 + 2^2 + ... + 2^n = 2[1+2+...+2^(n-1)] = 2[2^n - 1]/(2-1) = 2^(n+1) - 2,
a(n) = bn + c,
7 = a(2) = 2b+c,
3 = a(4) = 4b+c,
4 = 7-3 = -(4b+c)+(2b+c)=-2b, b=-2. c = 7- 2b=11.
a(n)=-2n+11,
s(n)=-n(n+1) + 11n = - n^2 + 10n = -n^2 + 10n - 25 + 25 = 25 - (n-5)^2,
1