abc为正数,且a+b+c=1,求证(1/a+1)(1/b+1)(1/c+1)≥64
3个回答

证明本题要用到均值不等式(正数的算术平均值>=它的几何平均值):

(a+b+c+d)/4>=(abcd)^(1/4)

(1/a+1)(1/b+1)(1/c+1)

=((a+1)/a) ((b+1)/b) ((c+1)/c)

=(a+1)(b+1)(c+1)/(abc)

=(a+ a+b+c)(b+ a+b+c)(c+

a+b+c)/(abc)

=(a+a+b+c)(b+a+b+c)(c+a+b+c)

= 64((a+a+b+c)/4)((b+a+b+c)/4)((c+a+b+c)/4)

>=64 (aabc)^(1/4) (babc)^(1/4)

(cabc)^(1/4)

=64(abc*abc*abc*abc)^(1/4)

=64

所以:(1/a+1)(1/b+1)(1/c+1)≥64

很高兴为您解答,希望对你有所帮助!

---------------------------------------------------------------------【学习宝典】团队