证明:DE∥AB,则:⊿CDE∽⊿ABC,S⊿CDE/S⊿ABC=(CD./BD)^2.
即:S1/(S1+S2+S3)=(CD/BC)^2,√[S1/(S1+S2+S3)]=CD/BC;---------------------(1)
同理可证:√[S2/(S1+S2+S3)]=BD/BC;------------------------------------------------(2)
∴√[S1/(S1+S2+S3)]+√[S2/(S1+S2+S3)]=CD/BC+BD/BC=(CD+BD)/BC=1.
即:(√S1+√S2)/√(S1+S2+S3)=1;
√S1+√S2=√(S1+S2+S3);
S1+2√(S1*S2)+S2=S1+S2+S3;
S3=2√(S1*S2).