已知函数f(x)=Asin(ωx+φ)+k(其中A>0,ω>0,0≤φ≤π)是R上的偶函数,且f(x)还满足以下三个条件
1个回答

解题思路:由函数的对称中心的纵坐标求出k的值,由最值求出A,根据函数f(x)是R上的偶函数,0≤φ≤π 可得 φ 值,由 sin(ω•[3π/4]+[π/2])=0,可得ω的值.

由①函数的最大值是3、②图象关于点(

4,1)对称,可得 k=1,A+1=2,故A=2,故函数f(x)=2sin(ωx+φ)+1.

根据函数f(x)是R上的偶函数,0≤φ≤π 可得 φ=[π/2]. 再由 sin(ω•[3π/4]+[π/2])=0,ω>0,可得ω•[3π/4]+[π/2]=π,ω=[2/3].

经检验f(x)=2sin(

2

3x+

π

2)+1满足③在区间[0,π]上是单调函数,

故答案为 f(x)=2sin(

2

3x+

π

2)+1.

点评:

本题考点: 由y=Asin(ωx+φ)的部分图象确定其解析式.

考点点评: 本题主要考查利用y=Asin(ωx+φ )的图象特征,由函数y=Asin(ωx+φ )的部分图象求解析式,属于中档题.