如图,AM是三角形ABC的中线,角DAM=角BAM,CD//AB.求证:AB=AD+CD
1个回答

方法一:

延长CD交AM的延长线于E.

∵AB∥CE,∴∠ABM=∠ECM、∠BAM=∠CEM,又BM=CM,∴△ABM≌△ECM,∴AB=EC.

∵AB∥ED,∴∠DEA=∠BAE,又∠BAE=∠DAE,∴∠DEA=∠DAE,∴AD=ED.

显然有:EC=ED+CD,而EC=AB、ED=AD,∴AB=AD+CD.

方法二:

过B作BE⊥AM交AM的延长线于F,再延长BF交AD的延长线于G.

∵∠BAF=∠GAF、AF⊥BG,∴AB=AG、BF=GF,∴∠ABG=∠AGB.

∵BM=CM、BF=GF,∴AF∥CG,又∠AFB=90°,∴∠BGC=90°,

∴∠AGB+∠DGC=∠CBG+(∠BCD+∠DCG)=(∠CBG+∠BCD)+∠DCG=90°.

∵AB∥CD,∴∠ABC=∠BCD,∴∠AGB+∠DGC=(∠CBG+∠ABC)+∠DCG,

∴∠AGB+∠DGC=∠ABG+∠DCG,而∠AGB=∠ABG,∴∠DGC=∠DCG,∴CD=GD.

显然有:AG=AD+GD,∴AG=AD+CD,又AB=AG,∴AB=AD+CD.