如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC
1个回答

解题思路:首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③正确.

∵△ABC和△DCE均是等边三角形,

∴BC=AC,CD=CE,∠ACB=∠ECD=60°,

∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,

∴△BCD≌△ACE(SAS),

∴AE=BD,(①正确)

∠CBD=∠CAE,

∵∠BCA=∠ACG=60°,AC=BC,

∴△BCF≌△ACG(ASA),

∴AG=BF,(②正确)

同理:△DFC≌△EGC(ASA),

∴CF=CG,

∴△CFG是等边三角形,

∴∠CFG=∠FCB=60°,

∴FG∥BE,(③正确)

过C作CM⊥AE于M,CN⊥BD于N,

∵△BCD≌△ACE,

∴∠BDC=∠AEC,

∵CD=CE,∠CND=∠CMA=90°,

∴△CDN≌△CEM,

∴CM=CN,

∵CM⊥AE,CN⊥BD,

∴△Rt△OCN≌Rt△OCM(HL)

∴∠BOC=∠EOC,

∴④正确;

故答案为:①②③④.

点评:

本题考点: 全等三角形的判定与性质;等边三角形的性质;相似三角形的判定与性质.

考点点评: 此题考查了等边三角形的判定与性质与全等三角形的判定与性质.此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.