已知△ABC,(1)如图1,若D点是△ABC内任一点,BD、CD分别为∠ABC、∠ACB的角平分线.则∠D、∠A的关系为
1个回答

(1):∵BD、CD是∠ABC和∠ACB的角平分线,

∴∠DBC=

1

2 ∠ABC,∠DCB=

1

2 ∠ACB,

∵∠ABC+∠ACB=180°-∠A,

∠BDC=180°-∠DBC-∠DCB=180°-

1

2 (∠ABC+∠ACB)=180°-

1

2 (180°-∠A)=90°+

1

2 ∠A,

∴∠BDC=90°+

1

2 ∠A,

即∠D=90°+

1

2 ∠A.

(2):∵BD、CD分别是∠CBE、∠BCF的平分线

∴∠DBC=

1

2 ∠EBC,∠BCD=

1

2 ∠BCF,

∵∠CBE、∠BCF是△ABC的两个外角

∴∠CBE+∠BCF=360°-(180°-∠A)=180°+∠A

∴∠DBC+∠BCD=

1

2 (∠EBC+∠BCD)=

1

2 (180°+∠A)=90°+

1

2 ∠A,

在△DBC中∠BDC=180°-(∠DBC+∠BCD)=180°-(90°+

1

2 ∠A)=90°-

1

2 ∠A,即∠D=90°-

1

2 ∠A.

(3)∵BD、CD分别为∠ABC、∠ECA的角平分线,

∴∠1=∠DBC=

1

2 ∠ABC,∠2=∠DCE=

1

2 (∠A+∠ABC),

∵∠ACE是△ABC的外角,

∴∠ACE=∠A+∠ABC,

∵∠DCE是△BCD的外角,

∴∠D=∠DCE-∠DBC

=∠DCE-∠1

=

1

2 ∠ACE-

1

2 ∠ABC

=

1

2 (∠A+∠ABC)-

1

2 ∠ABC

=

1

2 ∠A.

故答案为:∠D=90°+

1

2 ∠A;∠D=90°-

1

2 ∠A;∠D=

1

2 ∠A.