如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠A
1个回答

解题思路:(1)△ABM和△CDM是全等的等边三角形,那么可知这两个三角形的内角都等于60°,所有的边都相等,即知∠AMB=∠CMD=60°,又MA⊥MD,故∠AMD=90°,利用周角概念可求∠BMC,而BM=CM,结合三角形内角和等于180°,可求∠MBC、∠MCB;

(2)由于MA⊥MB,则∠AMD=90°,而MA=MD,那么∠MDA=45°,又∠MDC=60°,可求∠ADC=105°,由(1)中可知∠MBC=15°,则∠ABC=60°+15°=75°,所以∠ADC+∠ABC=180°;

(3)延长BM交CD于N,∠NMC是△BMC的外角,可求∠NMC=30°,即知MN是△CDM的角平分线,根据等腰三角形三线合一性质可知MB垂直平分CD;

(4)利用(2)中的方法可求∠BAD=105°,∠BCD=75°,易证∠BAD+∠ABC=180°,则AD∥BC,又∵AB=DC,可证四边形ABCD是等腰梯形,从而可知四边形ABCD是轴对称图形.

(1)∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,

∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,

又∵MA⊥MD,

∴∠AMD=90°,

∴∠BMC=360°-60°-60°-90°=150°,

又∵BM=CM,

∴∠MBC=∠MCB=15°;

(2)∵AM⊥DM,

∴∠AMD=90°,

又∵AM=DM,

∴∠MDA=∠MAD=45°,

∴∠ADC=45°+60°=105°,

∠ABC=60°+15°=75°,

∴∠ADC+∠ABC=180°;

(3)延长BM交CD于N,

∵∠NMC是△MBC的外角,

∴∠NMC=15°+15°=30°,

∴BM所在的直线是△CDM的角平分线,

又∵CM=DM,

∴BM所在的直线垂直平分CD;

(4)根据(2)同理可求∠DAB=105°,∠BCD=75°,

∴∠DAB+∠ABC=180°,

∴AD∥BC,

又∵AB=CD,

∴四边形ABCD是等腰梯形,

∴四边形ABCD是轴对称图形.

故(2)(3)(4)正确.

故选C.

点评:

本题考点: 轴对称图形;全等三角形的性质;线段垂直平分线的性质;等边三角形的性质.

考点点评: 本题利用了等边三角形的性质、三角形内角和定理、三角形外角性质、平行线的判定、梯形的判定、等腰三角形三线合一定理、轴对称的判定.