2x+y=dy/dx求高手解答谢谢.
1个回答

∵y=Ce^x(C是常数)是齐次方程y=dy/dx的通解

∴设原方程的解为y=C(x)e^x (C(x)是关于x的函数)

∵y'=C'(x)e^x+C(x)e^x,代入原方程得

C'(x)e^x=2x

==>C'(x)=2xe^(-x)

==>C(x)=∫2xe^(-x)dx=C-2(x+1)e^(-x) (C是常数)

∴y=C(x)e^x=Ce^x-2(x+1)

故原方程的通解是y=Ce^x-2(x+1).