在BC延长线上取点E
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵∠ACE=180-∠ACB,CD平分∠ACE
∴∠DCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB/2
∵BD平分∠ABC
∴∠DBC=∠ABC/2
∵∠DCE是△DBC的外角
∴∠DCE=∠BDC+∠DBC=∠BDC+∠ABC/2
∴∠BDC+∠ABC/2=90-∠ACB/2
∴∠BDC=90-(∠ABC+∠ACB)/2=90-(180-∠A)/2=∠A/2
∴2∠BDC=∠A
下面这题是我今天做的类似的题目,请参考.