bd,cd分别是三角形abc的两个外角角cbe角bcf的平分线,试探索角bdc与角a之间的数量关系
2个回答

∵∠A+∠ABC+∠ACB=180

∴∠ABC+∠ACB=180-∠A

∵∠CBE=180-∠ABC,BD平分∠CBE

∴∠CBD=∠CBE/2=(180-∠ABC)/2=90-∠ABC/2

∵∠BCF=180-∠ACB,CD平分∠BCF

∴∠BCD=∠BCF/2=(180-∠ACB)/2=90-∠ABC/2

∴∠BDC=180-(CBD+∠BCD)

=180-(90-∠ABC/2+90-∠ACB/2)

=∠ABC/2+∠ACB/2

=(∠ABC+∠ACB)/2

=(180-∠A)/2

=90-∠A/2