用配方法证明:-9x2+8x-2<0.
3个回答

解题思路:先两前面两项提-9得到-9x2+8x-2=-9(x2-[8/9]x)-2,再利用配方法得到-9x2+8x-2=-9(x-[4/9])2-[2/9],然后根据非负数的性质进行证明.

证明:-9x2+8x-2=-9(x2-[8/9]x)-2

=-9(x2-[8/9]x+[16/81]-[16/81])-2

=-9(x-[4/9])2-[2/9],

∵9(x-[4/9])2≥0,

∴-9(x-[4/9])2-[2/9]≤0,

∴-9(x-[4/9])2-[2/9]<0,

即-9x2+8x-2<0.

点评:

本题考点: 配方法的应用;非负数的性质:偶次方.

考点点评: 本题考查了配方法的应用:用配方法解一元二次方程,配方法的理论依据是公式a2±2ab+b2=(a±b)2;利用配方法求二次三项式是一个完全平方式时所含字母系数的值.也考查了非负数的性质.