nC1+2*nC2+3*nC3+…………n*nCn=?
1个回答

令Sn=1*nC1+2*nC2+3*nC3+……+n*nCn

Sn=1*nC1+2*nC2+3*nC3+……+n*nCn……①

因为nCm=nC(n-m)

Sn=1*nC(n-1)+2*nC(n-2)+3*nC(n-3)+……+(n-1)*nC1+n*nC0……②

①+② 2Sn=n*(nC1+nC2+……+nC(n-1))+n*nCn+n*nC0

因为nC0+nC1+nC2+……+nCn=(1+1)^n=2^n

所以 2Sn=n*(nC0+nC1+nC2+……+nC(n-1)+nCn-nC0-nCn)+n*nCn+n*nC0

2Sn=n*(2^n-2)+n+n

Sn=n*2^(n-1)