高中数列,有点难,谢谢.
1个回答

(1)

bn=a(n+1)-an

2a(n+2)=an+a(n+1)

∴2[a(n+2)-a(n+1)]=an-a(n+1)=-[a(n+1)-an]

bn=a(n+1)-an,

∴2b(n+1)=-bn,即b(n+1)/bn=-1/2

∴{bn}是等比数列

(2)b1=a2-a1=2-1=1;

∴{bn}是首项为1,公比为-1/2的等比数列;

∴bn=1×(-1/2)^(n-1);

∴a(n+1)-an=(-1/2)^(n-1);

∴an-a(n-1)=(-1/2)^(n-2);

a(n-1)-a(n-1)=(-1/2)^(n-3);

……

a2-a1=(-1/2)^0;

累加得:an-a1=(-1/2)^0+……+(-1/2)^(n-3)+(-1/2)^(n-2)=[1-(-1/2)^(n-1)]/(1+1/2)=(2/3)[1-(-1/2)^(n-1)];

∴an=a1+(2/3)[1-(-1/2)^(n-1)]

=5/3-(2/3)×(-1/2)^(n-1)

=5/3+(1/3)×(-1/2)^(n-2)