已知 f(x)= cos 2 (nπ+x)• sin 2 (nπ-x) cos 2 [(2n+1)π-x] (n∈Z)
1个回答

(1)当n为偶数,即n=2k,(k∈Z)时,

f(x)=

cos 2 (2kπ+x)• sin 2 (2kπ-x)

cos 2 [(2×2k+1)π-x] =

cos 2 x• sin 2 (-x)

cos 2 (π-x) =

cos 2 x• (-sinx) 2

(-cosx) 2 =sin 2x,(n∈Z)

当n为奇数,即n=2k+1,(k∈Z)时f(x)=

cos 2 [(2k+1)π+x]• sin 2 [(2k+1)π-x]

cos 2 {[2×(2k+1)+1]π-x} =

cos 2 [2kπ+(π+x)]• sin 2 [2kπ+(π-x)]

cos 2 [2×(2k+1)π+(π-x)] =

cos 2 (π+x)• sin 2 (π-x)

cos 2 (π-x) =

(-cosx) 2 • sin 2 x

(-cosx) 2 =si n 2 x,(n∈Z)

∴f(x)=sin 2x;

(2)由(1)得 f(

π

2010 )+f(

502π

1005 )=si n 2

π

2010 +si n 2

1004π

2010

= si n 2

π

2010 +si n 2 (

π

2 -

π

2010 ) = si n 2

π

2010 +co s 2 (

π

2010 )=1