1.证明sin 2 nx = sin((2n + 1)x) cos x – cos((2n + 1)x) sin x
5个回答

sin[(2n + 1)x]cosx - cos[(2n + 1)x]sinx

= sin[(2n + 1)x - x]

= sin(2nx + x - x)

= sin(2nx)

公式:sin(x ± y) = sinxcosy ± cosxsiny

sin4x/(2sinx) = 1/2,0 < x < π

sin4x = sinx

sin4x - sinx = 0

2cos[(4x + x)/2]sin[(4x - x)/2] = 0,公式sinx - siny = 2cos[(x + y)/2]sin[(x - y)/2]

cos(5x/2)sin(3x/2) = 0

cos(5x/2) = 0 OR sin(3x/2) = 0

5x/2 = π/2 OR 3x/2 = 0 OR 3x/2 = π,∵cos(π/2) = 0,sin(0) = 0,sin(π) = 0

x = π/5 OR x = 0 OR x = 2π/3,已知x > 0所以舍掉x = 0

∴x = π/5 OR x = 2π/3