x>y>1 (y!)^(x-1) 和(x!)^(y-1)的大小
7个回答

(y!)^(x-1) 和(x!)^(y-1)

题目出现阶乘“!”,所以x、y为自然数.

又x>y>1,所以y≥2,x≥3

不妨设x=y+k,k为自然数

即:

[(y!)^(x-1) ]/[(x!)^(y-1)]=[(y!)^(y+k-1)]/{[(y+k)!]^(y-1)}

=[(y!)^(y-1+k)]/{[(y!(y+1)(y+2)……(y+k)]^(y-1)}

=[(y!)^(y-1+k)]/{[(y!)^(y-1)][(y+1)(y+2)……(y+k)]^(y-1)}

=[(y!)^(y-1)][(y!)^k]/{[(y!)^(y-1)][(y+1)(y+2)……(y+k)]^(y-1)}

=[(y!)^k]/{[(y+1)(y+2)……(y+k)]^(y-1)}

<[(y!)^k]/{[(y+1)^k]^(y-1)}

=[(y!)^k]/{[(y+1)^k]^(y-1)}

<[(y!)^k]/[(y^k)^(y-1)]

=[(y!)^k]/[y^(y-1)]^k

=[(y!/y^(y-1)]^k

={(y/y)[(y-1)/y][(y-2)/y]……[3/y][2/y]*1}^k

<1^k=1

所以[(y!)^(x-1) ]/[(x!)^(y-1)]<1

则(y!)^(x-1)<(x!)^(y-1).