已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
1个回答

解题思路:(1)三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,说明方程f′(x)=0的两个根为1和-1,求出a与b,再代入f(-2)=-4,求出c值;

(2)由(1)求出f(x)的解析式,利用导数研究函数的单调性,求出极值;

(3)由(2)已知f(x)的极大值和极小值,把端点值f(-2)和f(5),从而求出最值;

(1)∵三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,

∴f′(x)=3x2+2ax+b,

f′(1)=0

f′(−1)=0可得

3+2a+b=0

3−2a+b=0解得

a=0

b=−3;

∴f(x)=x3-3x+c,∵f(-2)=-4,可得(-2)3-3×(-2)+c=0,解得c=2,

∴f(x)=x3-3x+2;

(2)∵f′(x)=3x2-3=3(x+1)(x-1),

若f′(x)>0即x>1或x<-1,f(x)为增函数,

若f′(x)<0即-1<x<1,f(x)为减函数,

f(x)在x=-1处取得极大值,在x=1处取得极小值,

f(x)极大值=f(-1)=-1+3+2=4,f(x)极小值=f(1)=1-3+2=0;

(3)∵求函数在区间[-2,5]的最值,

已知f(x)极大值=4,f(x)极小值=0,

f(-2)=(-2)3-3×(-2)+2=-8+6+2=0;

f(5)=53-3×5+2=112,

∴f(x)的最大值为112,f(x)的最小值为0;

点评:

本题考点: 利用导数求闭区间上函数的最值;利用导数研究函数的单调性;函数在某点取得极值的条件.

考点点评: 此题主要考查函数在某点的极值,利用导数研究函数的单调性,以及掌握不等式的解法.这是高考必考的考点;